2023-04-17 17:21:45 -04:00

329 lines
11 KiB
C

/*
@CodeAllNight
https://github.com/jamisonderek/flipper-zero-tutorials
This is a basic demonstration of reading/writing I2C protocol.
For this demo, we connect a I2C device to pins:
- 3V3 (3V3, pin 9) = VCC
- GND (GND, pin 18) = GND
- SCL (C0, pin 16) = SCL
- SDA (C1, pin 15) = SDA
*/
#include <furi.h>
#include <furi_hal.h>
#include <furi_hal_gpio.h>
#include <furi_hal_resources.h>
#include <gui/gui.h>
#include <locale/locale.h>
typedef enum {
I2cDemoStateNotFound,
I2cDemoStateFound,
I2cDemoStateWriteSuccess,
I2cDemoStateReadSuccess,
I2cDemoStateWriteReadSuccess,
} I2cDemoState;
typedef enum {
DemoEventTypeTick,
DemoEventTypeKey,
// You can add additional events here.
} DemoEventType;
typedef struct {
DemoEventType type; // The reason for this event.
InputEvent input; // This data is specific to keypress data.
// You can add additional data that is helpful for your events.
} DemoEvent;
typedef struct {
FuriString* buffer;
// You can add additional state here.
int address;
I2cDemoState state;
uint16_t value;
} DemoData;
typedef struct {
FuriMessageQueue* queue; // Message queue (DemoEvent items to process).
FuriMutex* mutex; // Used to provide thread safe access to data.
DemoData* data; // Data accessed by multiple threads (acquire the mutex before accessing!)
} DemoContext;
// Invoked when input (button press) is detected. We queue a message and then return to the caller.
static void input_callback(InputEvent* input_event, FuriMessageQueue* queue) {
furi_assert(queue);
DemoEvent event = {.type = DemoEventTypeKey, .input = *input_event};
furi_message_queue_put(queue, &event, FuriWaitForever);
}
// Invoked by the timer on every tick. We queue a message and then return to the caller.
static void tick_callback(void* ctx) {
furi_assert(ctx);
FuriMessageQueue* queue = ctx;
DemoEvent event = {.type = DemoEventTypeTick};
// It's OK to loose this event if system overloaded (so we don't pass a wait value for 3rd parameter.)
furi_message_queue_put(queue, &event, 0);
}
// Invoked by the draw callback to render the screen. We render our UI on the callback thread.
static void render_callback(Canvas* canvas, void* ctx) {
// Attempt to aquire context, so we can read the data.
DemoContext* demo_context = ctx;
if(furi_mutex_acquire(demo_context->mutex, 200) != FuriStatusOk) {
return;
}
DemoData* data = demo_context->data;
canvas_set_font(canvas, FontPrimary);
if(data->address) {
canvas_draw_str_aligned(canvas, 64, 20, AlignCenter, AlignCenter, "FOUND I2C DEVICE");
furi_string_printf(data->buffer, "Address 0x%02x", (data->address));
canvas_draw_str_aligned(
canvas, 64, 30, AlignCenter, AlignCenter, furi_string_get_cstr(data->buffer));
if(data->state == I2cDemoStateWriteSuccess) {
canvas_draw_str_aligned(canvas, 64, 40, AlignCenter, AlignCenter, "WRITE SUCCESS");
} else if(data->state == I2cDemoStateReadSuccess) {
canvas_draw_str_aligned(canvas, 64, 40, AlignCenter, AlignCenter, "READ SUCCESS");
} else if(data->state == I2cDemoStateFound) {
canvas_draw_str_aligned(canvas, 64, 40, AlignCenter, AlignCenter, "FOUND DEVICE");
} else if(data->state == I2cDemoStateWriteReadSuccess) {
canvas_draw_str_aligned(
canvas, 64, 40, AlignCenter, AlignCenter, "WRITE/READ SUCCESS");
}
furi_string_printf(data->buffer, "value %d", (data->value));
canvas_draw_str_aligned(
canvas, 64, 50, AlignCenter, AlignCenter, furi_string_get_cstr(data->buffer));
} else {
canvas_draw_str_aligned(canvas, 64, 20, AlignCenter, AlignCenter, "I2C NOT FOUND");
canvas_draw_str_aligned(canvas, 64, 30, AlignCenter, AlignCenter, "pin15=SDA. pin16=SCL");
canvas_draw_str_aligned(canvas, 64, 40, AlignCenter, AlignCenter, "pin9=VCC. pin18=GND");
}
// Release the context, so other threads can update the data.
furi_mutex_release(demo_context->mutex);
}
void demo_i2c_call() {
uint8_t addr = 0x46;
uint8_t reg = 0x20;
uint8_t value8 = 0;
uint16_t value16 = 0;
uint8_t buffer[3] = {0x20, 0, 0};
uint32_t timeout = 100;
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
// Typically you use one of the following methods...
furi_hal_i2c_is_device_ready(&furi_hal_i2c_handle_external, addr, timeout);
furi_hal_i2c_tx(&furi_hal_i2c_handle_external, addr, buffer, 1, timeout);
furi_hal_i2c_rx(&furi_hal_i2c_handle_external, addr, buffer, 1, timeout);
furi_hal_i2c_trx(&furi_hal_i2c_handle_external, addr, buffer, 1, buffer, 2, timeout);
// or one of these helper methods...
furi_hal_i2c_write_reg_8(&furi_hal_i2c_handle_external, addr, reg, value8, timeout);
furi_hal_i2c_write_reg_16(&furi_hal_i2c_handle_external, addr, reg, value16, timeout);
furi_hal_i2c_read_reg_8(&furi_hal_i2c_handle_external, addr, reg, &value8, timeout);
furi_hal_i2c_read_reg_16(&furi_hal_i2c_handle_external, addr, reg, &value16, timeout);
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
}
uint8_t demo_i2c_find_device() {
uint8_t addr = 0;
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
for(uint8_t try_addr = 0; try_addr != 0xff; try_addr++) {
if(furi_hal_i2c_is_device_ready(&furi_hal_i2c_handle_external, try_addr, 5)) {
addr = try_addr;
break;
}
}
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
return addr;
}
bool demo_i2c_init_bh1750(uint8_t addr) {
bool result = false;
uint8_t buffer[1];
buffer[0] = 0x1; // write a 0x1 to init a BH1750 device.
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
result = furi_hal_i2c_tx(&furi_hal_i2c_handle_external, addr, buffer, 1, 100);
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
return result;
}
bool demo_i2c_write_one_time_h_res_mode_bh1750(uint8_t addr) {
bool result = false;
uint8_t buffer[1] = {
0x20}; // write a 0x20 for "One Time H-Resolution Mode" from BH1750 device.
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
if(furi_hal_i2c_tx(&furi_hal_i2c_handle_external, addr, buffer, 1, 100)) {
result = true;
}
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
return result;
}
bool demo_i2c_read_one_time_h_res_mode_bh1750(uint8_t addr, uint16_t* value) {
bool result = false;
uint8_t buffer[2];
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
// Read 2 bytes from BH1750 device.
if(furi_hal_i2c_rx(&furi_hal_i2c_handle_external, addr, buffer, 2, 100)) {
*value = (buffer[0] << 8) | buffer[1];
result = true;
}
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
return result;
}
bool demo_i2c_write_read_bh1750(uint8_t addr, uint16_t* value) {
bool result = false;
uint8_t buffer[2] = {
0x20, 0}; // write a 0x20 for "One Time H-Resolution Mode" from BH1750 device.
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
if(furi_hal_i2c_trx(&furi_hal_i2c_handle_external, addr, buffer, 1, buffer, 2, 100)) {
*value = (buffer[0] << 8) | buffer[1];
result = true;
}
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
return result;
}
bool demo_i2c_read_reg_bh1750(uint8_t addr, uint16_t* value) {
bool result = false;
furi_hal_i2c_acquire(&furi_hal_i2c_handle_external);
if(furi_hal_i2c_read_reg_16(&furi_hal_i2c_handle_external, addr, 0x20, value, 100)) {
result = true;
}
furi_hal_i2c_release(&furi_hal_i2c_handle_external);
return result;
}
// Our main loop invokes this method after acquiring the mutex, so we can safely access the protected data.
static void update_i2c_status(void* ctx) {
DemoContext* demo_context = ctx;
DemoData* data = demo_context->data;
uint8_t addr = 0;
addr = demo_i2c_find_device();
if(addr) {
data->state = I2cDemoStateFound;
if(demo_i2c_init_bh1750(addr)) {
data->state = I2cDemoStateWriteSuccess;
if(demo_i2c_write_one_time_h_res_mode_bh1750(addr)) {
data->state = I2cDemoStateWriteSuccess;
if(demo_i2c_read_one_time_h_res_mode_bh1750(addr, &data->value)) {
data->state = I2cDemoStateReadSuccess;
if(demo_i2c_write_read_bh1750(addr, &data->value)) {
data->state = I2cDemoStateWriteReadSuccess;
}
}
}
}
}
data->address = addr;
}
int32_t i2c_demo_app(void* p) {
UNUSED(p);
// Configure our initial data.
DemoContext* demo_context = malloc(sizeof(DemoContext));
demo_context->mutex = furi_mutex_alloc(FuriMutexTypeNormal);
demo_context->data = malloc(sizeof(DemoData));
demo_context->data->buffer = furi_string_alloc();
demo_context->data->address = 0;
demo_context->data->state = I2cDemoStateNotFound;
demo_context->data->value = 0;
// Queue for events (tick or input)
demo_context->queue = furi_message_queue_alloc(8, sizeof(DemoEvent));
// Set ViewPort callbacks
ViewPort* view_port = view_port_alloc();
view_port_draw_callback_set(view_port, render_callback, demo_context);
view_port_input_callback_set(view_port, input_callback, demo_context->queue);
// Open GUI and register view_port
Gui* gui = furi_record_open(RECORD_GUI);
gui_add_view_port(gui, view_port, GuiLayerFullscreen);
// Update the screen fairly frequently (every 1000 milliseconds = 1 second.)
FuriTimer* timer = furi_timer_alloc(tick_callback, FuriTimerTypePeriodic, demo_context->queue);
furi_timer_start(timer, 1000);
demo_i2c_call();
// Main loop
DemoEvent event;
bool processing = true;
do {
if(furi_message_queue_get(demo_context->queue, &event, FuriWaitForever) == FuriStatusOk) {
switch(event.type) {
case DemoEventTypeKey:
// Short press of back button exits the program.
if(event.input.type == InputTypeShort && event.input.key == InputKeyBack) {
processing = false;
}
break;
case DemoEventTypeTick:
// Every timer tick we update the i2c status.
furi_mutex_acquire(demo_context->mutex, FuriWaitForever);
update_i2c_status(demo_context);
furi_mutex_release(demo_context->mutex);
break;
default:
break;
}
// Send signal to update the screen (callback will get invoked at some point later.)
view_port_update(view_port);
} else {
// We had an issue getting message from the queue, so exit application.
processing = false;
}
} while(processing);
// Free resources
furi_timer_free(timer);
view_port_enabled_set(view_port, false);
gui_remove_view_port(gui, view_port);
view_port_free(view_port);
furi_record_close(RECORD_GUI);
furi_message_queue_free(demo_context->queue);
furi_mutex_free(demo_context->mutex);
furi_string_free(demo_context->data->buffer);
free(demo_context->data);
free(demo_context);
return 0;
}