/** * @file protocol_demo_fsk_geo.c * * This is an example of implementing a low-frequency (125kHz) RFID protocol * using FSK modulation. This protocol is used to transmit geographical * coordinates. The data is encoded in the following way: * - 16 bits preamble (0xF337) * - 64 bits of data (32 bits latitude, 32 bits longitude) * - 8 bits of XOR parity * * You can create similar protocols, just be sure to change the preamble so * that the decoder can distinguish between different protocols. * * Some FSK protocols decide to also Manchester encode the data, but this * example does not do that. Manchester encoding would provide an additional * layer of error detection (since data must be encoded as either 01 or 10). * */ #include #include #include #include #include #include "lfrfid_protocols.h" // 16us of jitter. #define JITTER_TIME (20) // 8 bytes of data. #define DEMO_DECODED_DATA_SIZE (8) // 2 byte header, 8 bytes data, 1 byte xor parity #define DEMO_ENCODED_DATA_SIZE (11) // 2 byte header, 8 bytes data, 1 byte xor parity #define DEMO_ENCODED_DATA_BITS (2 * 8 + 8 * 8 + 8) #define TAG "Demo FSK Geo" typedef struct { FSKDemod* fsk_demod; } ProtocolDemoDecoder; typedef struct { FSKOsc* fsk_osc; uint8_t encoded_index; uint32_t pulse; } ProtocolDemoEncoder; typedef struct { ProtocolDemoDecoder decoder; ProtocolDemoEncoder encoder; uint8_t encoded_data[DEMO_ENCODED_DATA_SIZE]; uint8_t data[DEMO_DECODED_DATA_SIZE]; } ProtocolDemo; static ProtocolDemo* protocol_demo_alloc(void) { ProtocolDemo* protocol = malloc(sizeof(ProtocolDemo)); protocol->decoder.fsk_demod = fsk_demod_alloc(64 - JITTER_TIME, 6, 80 + JITTER_TIME, 5); protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50); float* f = (float*)protocol->data; *f = 36.63813; // Sample latitude f = (float*)(protocol->data + 4); *f = -93.28007; // Sample longitude return protocol; }; static void protocol_demo_free(ProtocolDemo* protocol) { fsk_demod_free(protocol->decoder.fsk_demod); fsk_osc_free(protocol->encoder.fsk_osc); free(protocol); }; static uint8_t* protocol_demo_get_data(ProtocolDemo* protocol) { return protocol->data; }; static void protocol_demo_decoder_start(ProtocolDemo* protocol) { memset(protocol->encoded_data, 0, sizeof(uint8_t) * DEMO_ENCODED_DATA_SIZE); }; static void protocol_demo_decoder_store_data(ProtocolDemo* protocol, bool data) { bit_lib_push_bit(protocol->encoded_data, DEMO_ENCODED_DATA_SIZE, data); } static bool protocol_demo_can_be_decoded(const uint8_t* encoded_data) { // Our preamble is 0xF337. if(bit_lib_get_bits(encoded_data, 0, 8) != 0xF3) { return false; } if(bit_lib_get_bits(encoded_data, 8, 8) != 0x37) { return false; } // Checksum is XOR of each byte of data uint8_t xor = 0; for(int i = 0; i < DEMO_DECODED_DATA_SIZE; i++) { xor ^= bit_lib_get_bits(encoded_data, 16 + i * 8, 8); } // Checksum is stored after data if(xor != bit_lib_get_bits(encoded_data, 16 + DEMO_DECODED_DATA_SIZE * 8, 8)) { return false; } return true; } static void protocol_demo_decode(const uint8_t* encoded_data, uint8_t* decoded_data) { // Skip preamble, copy data. // If data was Manchester encoded, decoded first (or copy every other bit). bit_lib_copy_bits(decoded_data, 0, 8 * DEMO_DECODED_DATA_SIZE, encoded_data, 16); } static bool protocol_demo_decoder_feed(ProtocolDemo* protocol, bool level, uint32_t duration) { bool value; uint32_t count; bool result = false; fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count); if(count > 0) { // Store data and check if it can be decoded for(size_t i = 0; i < count; i++) { protocol_demo_decoder_store_data(protocol, value); if(protocol_demo_can_be_decoded(protocol->encoded_data)) { protocol_demo_decode(protocol->encoded_data, protocol->data); result = true; break; } } } return result; }; static void protocol_demo_write_raw_bit(bool bit, uint8_t position, uint8_t* card_data) { bit_lib_set_bits(card_data, position, bit, 1); } static void protocol_demo_encode(const uint8_t* decoded_data, uint8_t* encoded_data) { uint8_t card_data[DEMO_ENCODED_DATA_SIZE] = {0}; // 0xF337 (1111001100110111) preamble protocol_demo_write_raw_bit(1, 0, card_data); protocol_demo_write_raw_bit(1, 1, card_data); protocol_demo_write_raw_bit(1, 2, card_data); protocol_demo_write_raw_bit(1, 3, card_data); protocol_demo_write_raw_bit(0, 4, card_data); protocol_demo_write_raw_bit(0, 5, card_data); protocol_demo_write_raw_bit(1, 6, card_data); protocol_demo_write_raw_bit(1, 7, card_data); protocol_demo_write_raw_bit(0, 8, card_data); protocol_demo_write_raw_bit(0, 9, card_data); protocol_demo_write_raw_bit(1, 10, card_data); protocol_demo_write_raw_bit(1, 11, card_data); protocol_demo_write_raw_bit(0, 12, card_data); protocol_demo_write_raw_bit(1, 13, card_data); protocol_demo_write_raw_bit(1, 14, card_data); protocol_demo_write_raw_bit(1, 15, card_data); // Some protocols may want to Manchester encode the data, but this one does not. bit_lib_copy_bits(card_data, 16, DEMO_DECODED_DATA_SIZE * 8, decoded_data, 0); // Checksum is XOR of each byte of data uint8_t xor = 0; for(uint8_t i = 0; i < DEMO_DECODED_DATA_SIZE; i++) { xor ^= decoded_data[i]; } // Checksum is stored after data bit_lib_copy_bits(card_data, 16 + DEMO_DECODED_DATA_SIZE * 8, 8, &xor, 0); memcpy(encoded_data, &card_data, DEMO_ENCODED_DATA_SIZE); } static bool protocol_demo_encoder_start(ProtocolDemo* protocol) { protocol_demo_encode(protocol->data, (uint8_t*)protocol->encoded_data); protocol->encoder.encoded_index = 0; protocol->encoder.pulse = 0; return true; }; static LevelDuration protocol_demo_encoder_yield(ProtocolDemo* protocol) { bool level = 0; uint32_t duration = 0; // if pulse is zero, we need to output high, otherwise we need to output low if(protocol->encoder.pulse == 0) { // get bit uint8_t bit = bit_lib_get_bits( (uint8_t*)protocol->encoded_data, protocol->encoder.encoded_index, 1) & 1; // get pulse from oscillator bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration); if(advance) { protocol->encoder.encoded_index++; if(protocol->encoder.encoded_index >= (DEMO_ENCODED_DATA_BITS)) { protocol->encoder.encoded_index = 0; } } // duration divided by 2 because we need to output high and low duration = duration / 2; protocol->encoder.pulse = duration; level = true; } else { // output low half and reset pulse duration = protocol->encoder.pulse; protocol->encoder.pulse = 0; level = false; } return level_duration_make(level, duration); }; static bool protocol_demo_write_data(ProtocolDemo* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; protocol_demo_encoder_start(protocol); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 | (3 << LFRFID_T5577_MAXBLOCK_SHIFT); request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32); request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32); // Since we only have 3 bytes of data, we need to shift the last byte by 8 bits // so we send "123456" as "12345600" instead of "00123456" (with 0s in the middle // of our signal). request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 24) << 8; request->t5577.blocks_to_write = 4; result = true; FURI_LOG_D( TAG, "T5577 Write data: %08lX %08lX %08lX", request->t5577.block[1], request->t5577.block[2], request->t5577.block[3]); } return result; }; static void protocol_demo_render_data(ProtocolDemo* protocol, FuriString* result) { uint8_t* data = protocol->data; float* lat = (float*)data; float* lon = (float*)(data + 4); furi_string_printf( result, "Lat: %f\n" "Long: %f", (double)*lat, (double)*lon); }; static void protocol_demo_render_brief_data(ProtocolDemo* protocol, FuriString* result) { uint8_t* data = protocol->data; float* lat = (float*)data; float* lon = (float*)(data + 4); furi_string_printf(result, "(%f,%f)", (double)*lat, (double)*lon); }; /* // https://onlinegdb.com/UHHaOKrpj // E.g. 36.0352, -86.6797 => 0B 24 10 42 02 5C AD C2 #include #include int main() { float f,lat,lon; printf("enter latitude,longitude: "); // E.g. 36.0352, -86.6797 scanf("%f,%f", &lat,&lon); f = lat; uint8_t* lat_p = (uint8_t*)&f; printf("%02X %02X %02X %02X ", *lat_p, *(lat_p+1),*(lat_p+2),*(lat_p+3)); f = lon; printf("%02X %02X %02X %02X", *lat_p, *(lat_p+1),*(lat_p+2),*(lat_p+3)); return 0; } */ const ProtocolBase protocol_demo_fsk_geo = { .name = "FEE7", .manufacturer = "JAMISON", .data_size = DEMO_DECODED_DATA_SIZE, .features = LFRFIDFeatureASK, .validate_count = 3, .alloc = (ProtocolAlloc)protocol_demo_alloc, .free = (ProtocolFree)protocol_demo_free, .get_data = (ProtocolGetData)protocol_demo_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_demo_decoder_start, .feed = (ProtocolDecoderFeed)protocol_demo_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_demo_encoder_start, .yield = (ProtocolEncoderYield)protocol_demo_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_demo_render_data, .render_brief_data = (ProtocolRenderData)protocol_demo_render_brief_data, .write_data = (ProtocolWriteData)protocol_demo_write_data, };