#include "x10.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolX10" // @CodeAllNight - X10 Packet decoder... // // Do a Sub-GHz read at 310MHz, with 650KHz AM modulation. // // Pulses are as follows... // + 9600 [16*te_short] ~ [te_delta*3] | 9025 [te_delta*7] // - 4875 [8*te_short] ~ [te_delta*3] | 4488 [te_delta*5] // // 32 bits of data (see below)... // + 600 [te_short] | 550 // - 600 [te_short] (for 0) or 1800 [te_long] (for 1) | 550 (for 0) or 1700 (for 1) [te_delta*2] // // + 600 [te_short] // -43200 [72*te_short] ~ [te_delta*2] // // Data simplification of 32 bits can the thought of as: // first 8 bits are device id (technically first 4 bits sent are channel #). // second 8 bits are inverted from previous 8 bits. // next 8 bits are command. // last 8 bits are inverted from previous 8 bits. // // Format: SSSSXBXX ssssxbxx DBOQBXXX dboqbxxx // S - The serial number (Channel) is encoded in the first four bits that were sent. // x - Unused bits // B - Bit 6 is set if the button should be button 9-16, instead of buttons 1-8. // DQ - The 1st bit of byte 3 is 1 if DIMMER. (bit 4=0 for BRIGHT, bit 4=1 for DIM) // B - The 2nd bit of byte 3 is the button number. // Q - 3rd bit of byte 3 are 1 for OFF and 0 for ON (unless DIMMER). // B - 4th and 5th bit of byte 3 is the rest of the button number. // // Actual protocol can be found at http://kbase.x10.com/wiki/CM17A_Protocol static const SubGhzBlockConst subghz_protocol_x10_const = { .te_short = 600, .te_long = 1800, .te_delta = 100, .min_count_bit_for_found = 32, }; struct SubGhzProtocolDecoderX10 { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderX10 { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { X10DecoderStepReset = 0, X10DecoderStepFoundPreambula, X10DecoderStepSaveDuration, X10DecoderStepCheckDuration, } X10DecoderStep; const SubGhzProtocolDecoder subghz_protocol_x10_decoder = { .alloc = subghz_protocol_decoder_x10_alloc, .free = subghz_protocol_decoder_x10_free, .feed = subghz_protocol_decoder_x10_feed, .reset = subghz_protocol_decoder_x10_reset, .get_hash_data = subghz_protocol_decoder_x10_get_hash_data, .serialize = subghz_protocol_decoder_x10_serialize, .deserialize = subghz_protocol_decoder_x10_deserialize, .get_string = subghz_protocol_decoder_x10_get_string, }; const SubGhzProtocolEncoder subghz_protocol_x10_encoder = { .alloc = NULL, .free = NULL, .deserialize = NULL, .stop = NULL, .yield = NULL, }; const SubGhzProtocol subghz_protocol_x10 = { .name = SUBGHZ_PROTOCOL_X10_NAME, .type = SubGhzProtocolTypeDynamic, .flag = SubGhzProtocolFlag_315 /* Technically it is 310MHz only */ | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable, .decoder = &subghz_protocol_x10_decoder, .encoder = &subghz_protocol_x10_encoder, }; void* subghz_protocol_decoder_x10_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderX10* instance = malloc(sizeof(SubGhzProtocolDecoderX10)); instance->base.protocol = &subghz_protocol_x10; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_x10_free(void* context) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; free(instance); } void subghz_protocol_decoder_x10_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = X10DecoderStepReset; } bool subghz_protocol_x10_validate(void* context) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; SubGhzBlockDecoder* decoder = &instance->decoder; uint64_t data = decoder->decode_data; return decoder->decode_count_bit >= subghz_protocol_x10_const.min_count_bit_for_found && ((((data >> 24) ^ (data >> 16)) & 0xFF) == 0xFF) && ((((data >> 8) ^ (data )) & 0xFF) == 0xFF); } void subghz_protocol_decoder_x10_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; switch(instance->decoder.parser_step) { case X10DecoderStepReset: if((level) && (DURATION_DIFF(duration, subghz_protocol_x10_const.te_short * 16) < subghz_protocol_x10_const.te_delta * 7)) { instance->decoder.parser_step = X10DecoderStepFoundPreambula; } break; case X10DecoderStepFoundPreambula: if((!level) && (DURATION_DIFF(duration, subghz_protocol_x10_const.te_short * 8) < subghz_protocol_x10_const.te_delta * 5)) { instance->decoder.parser_step = X10DecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { subghz_protocol_decoder_x10_reset(context); } break; case X10DecoderStepSaveDuration: if(level) { if(DURATION_DIFF(duration, subghz_protocol_x10_const.te_short) < subghz_protocol_x10_const.te_delta) { if(instance->decoder.decode_count_bit == subghz_protocol_x10_const.min_count_bit_for_found) { instance->decoder.parser_step = X10DecoderStepReset; if (subghz_protocol_x10_validate(context)) { FURI_LOG_E(TAG, "Decoded a signal!"); instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } subghz_protocol_decoder_x10_reset(context); } else { instance->decoder.te_last = duration; instance->decoder.parser_step = X10DecoderStepCheckDuration; } } else { subghz_protocol_decoder_x10_reset(context); } } else { subghz_protocol_decoder_x10_reset(context); } break; case X10DecoderStepCheckDuration: if(!level) { if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_x10_const.te_short) < subghz_protocol_x10_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_x10_const.te_short) < subghz_protocol_x10_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = X10DecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_x10_const.te_short) < subghz_protocol_x10_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_x10_const.te_long) < subghz_protocol_x10_const.te_delta * 2)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = X10DecoderStepSaveDuration; } else { subghz_protocol_decoder_x10_reset(context); } } else { subghz_protocol_decoder_x10_reset(context); } break; } } /** * Set the serial and btn values based on the data and data_count_bit. * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_x10_check_remote_controller(SubGhzBlockGeneric* instance) { instance->serial = (instance->data & 0xF0000000) >> (24+4); instance->btn = (((instance->data & 0x07000000) >> 24) | ((instance->data & 0xF800) >> 8)); } uint8_t subghz_protocol_decoder_x10_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_x10_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } SubGhzProtocolStatus subghz_protocol_decoder_x10_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; bool ret = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { break; } if(instance->generic.data_count_bit != subghz_protocol_x10_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } ret = true; } while(false); return ret; } const char* CHANNEL_LETTERS = "MNOPCDABEFGHKLIJ"; void subghz_protocol_decoder_x10_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderX10* instance = context; subghz_protocol_x10_check_remote_controller(&instance->generic); char code_channel = CHANNEL_LETTERS[(instance->generic.serial & 0x0F)]; uint32_t code_button = 1 + ( ((instance->generic.btn&0x10) >> 4) | ((instance->generic.btn&0x8) >> 2) | ((instance->generic.btn&0x40)>>4) | ((instance->generic.btn&4)<<1)); char* code_action = (instance->generic.btn & 0x20) == 0x20 ? "Off" : "On"; if (instance->generic.btn == 0x98) { code_button = 0; code_action = "Dim"; } else if (instance->generic.btn == 0x88) { code_button = 0; code_action = "Bright"; } furi_string_cat_printf( output, "%s %dbit\r\n" "Channel:%c \r\n" "Button:%ld %s\r\n\r\n" "Key:%lX%08lX\r\n" "Sn:%07lX Btn:%X\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_channel, code_button, code_action, (uint32_t)(instance->generic.data >> 32), (uint32_t)instance->generic.data, instance->generic.serial, instance->generic.btn); }