flipper-zero-tutorials/gpio/ws2812b_tester/led_driver.c

316 lines
10 KiB
C
Raw Normal View History

2023-11-25 21:05:52 +00:00
/**
* @file led_driver.c
* @brief WS2812B LED Driver
* @details This driver uses DMA and TIM2 AAR to drive WS2812B LEDs. There is no circular buffer,
* so all of the data is loaded into memory at the beginning. We are able to driver 256 LEDs.
*
*/
#include <stm32wbxx_ll_dma.h>
#include "led_driver.h"
#define MAX_LED_COUNT 256
// We store the HIGH/LOW durations (2 values) for each color bit (24 bits per LED)
#define LED_DRIVER_BUFFER_SIZE (MAX_LED_COUNT * 2 * 24)
// We use a setinel value to figure out when the timer is complete.
#define LED_DRIVER_TIMER_SETINEL 0xFFU
/** 64 transitions per us @ 64MHz. Our timing is in NANO_SECONDS */
#define LED_DRIVER_TIMER_NANOSECOND (1000U / (SystemCoreClock / 1000000U))
// Timings for WS2812B
#define LED_DRIVER_T0H 400U
#define LED_DRIVER_T1H 800U
#define LED_DRIVER_T0L 850U
#define LED_DRIVER_T1L 450U
// Wait for 35ms for the DMA to complete. NOTE: 1000 leds*(850ns+450ns)*24 = 32ms
#define LED_DRIVER_SETINEL_WAIT_MS 35
struct LedDriver {
LL_DMA_InitTypeDef dma_gpio_update;
LL_DMA_InitTypeDef dma_led_transition_timer;
const GpioPin* gpio;
uint32_t gpio_buf[2]; // On/Off for GPIO
uint8_t timer_buffer[LED_DRIVER_BUFFER_SIZE + 2];
uint32_t write_pos;
uint32_t read_pos;
uint32_t count_leds;
uint32_t* led_data;
};
static void led_driver_init_dma_gpio_update(LedDriver* led_driver, const GpioPin* gpio) {
led_driver->gpio = gpio;
// Memory to Peripheral
led_driver->dma_gpio_update.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
// Peripheral (GPIO - We populate GPIO port's BSRR register)
led_driver->dma_gpio_update.PeriphOrM2MSrcAddress = (uint32_t)&gpio->port->BSRR;
led_driver->dma_gpio_update.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
led_driver->dma_gpio_update.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
// Memory (State to set GPIO)
led_driver->dma_gpio_update.MemoryOrM2MDstAddress = (uint32_t)led_driver->gpio_buf;
led_driver->dma_gpio_update.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
led_driver->dma_gpio_update.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
// Data
led_driver->dma_gpio_update.Mode = LL_DMA_MODE_CIRCULAR;
led_driver->dma_gpio_update.NbData = 2; // We cycle between two (HIGH/LOW)values
// When to perform data exchange
led_driver->dma_gpio_update.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
led_driver->dma_gpio_update.Priority = LL_DMA_PRIORITY_VERYHIGH;
}
static void led_driver_init_dma_led_transition_timer(LedDriver* led_driver) {
// Timer that triggers based on user data.
led_driver->dma_led_transition_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
// Peripheral (Timer - We populate TIM2's ARR register)
led_driver->dma_led_transition_timer.PeriphOrM2MSrcAddress = (uint32_t)&TIM2->ARR;
led_driver->dma_led_transition_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
led_driver->dma_led_transition_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
// Memory (Timings)
led_driver->dma_led_transition_timer.MemoryOrM2MDstAddress =
(uint32_t)led_driver->timer_buffer;
led_driver->dma_led_transition_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
led_driver->dma_led_transition_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
// Data
led_driver->dma_led_transition_timer.Mode = LL_DMA_MODE_NORMAL;
led_driver->dma_led_transition_timer.NbData = LED_DRIVER_BUFFER_SIZE;
// When to perform data exchange
led_driver->dma_led_transition_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
led_driver->dma_led_transition_timer.Priority = LL_DMA_PRIORITY_HIGH;
}
LedDriver* led_driver_alloc(int count_leds, const GpioPin* gpio) {
furi_assert(gpio);
furi_assert(count_leds && count_leds <= MAX_LED_COUNT);
LedDriver* led_driver = malloc(sizeof(LedDriver));
led_driver_init_dma_gpio_update(led_driver, gpio);
led_driver_init_dma_led_transition_timer(led_driver);
led_driver->led_data = malloc(MAX_LED_COUNT * sizeof(uint32_t));
led_driver->count_leds = count_leds;
return led_driver;
}
void led_driver_free(LedDriver* led_driver) {
furi_assert(led_driver);
free(led_driver->led_data);
free(led_driver);
}
uint32_t led_driver_set_led(LedDriver* led_driver, uint32_t index, uint32_t rrggbb) {
furi_assert(led_driver);
if(index >= led_driver->count_leds) {
return 0xFFFFFFFF;
}
uint32_t previous = led_driver->led_data[index];
led_driver->led_data[index] = rrggbb;
return previous;
}
uint32_t led_driver_get_led(LedDriver* led_driver, uint32_t index) {
furi_assert(led_driver);
if(index >= led_driver->count_leds) {
return 0xFFFFFFFF;
}
return led_driver->led_data[index];
}
static void led_driver_start_dma(LedDriver* led_driver) {
furi_assert(led_driver);
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &led_driver->dma_gpio_update);
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &led_driver->dma_led_transition_timer);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
}
static void led_driver_start_timer() {
furi_hal_bus_enable(FuriHalBusTIM2);
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetPrescaler(TIM2, 0);
// Updated by led_driver->dma_led_transition_timer.PeriphOrM2MSrcAddress
LL_TIM_SetAutoReload(TIM2, LED_DRIVER_TIMER_SETINEL);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
LL_TIM_EnableUpdateEvent(TIM2);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_GenerateEvent_UPDATE(TIM2);
}
static void led_driver_stop_timer() {
LL_TIM_DisableCounter(TIM2);
LL_TIM_DisableUpdateEvent(TIM2);
LL_TIM_DisableDMAReq_UPDATE(TIM2);
furi_hal_bus_disable(FuriHalBusTIM2);
}
static void led_driver_stop_dma() {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
LL_DMA_ClearFlag_TC1(DMA1);
LL_DMA_ClearFlag_TC2(DMA1);
}
static void led_driver_spin_lock(LedDriver* led_driver) {
const uint32_t prev_timer = DWT->CYCCNT;
const uint32_t wait_time = LED_DRIVER_SETINEL_WAIT_MS * SystemCoreClock / 1000;
do {
/* Make sure it's started (allow 100 ticks), but then check for sentinel value. */
if(TIM2->ARR == LED_DRIVER_TIMER_SETINEL && DWT->CYCCNT - prev_timer > 100) {
break;
}
// 0xFF is fairly quick, make sure we didn't miss it.
if((DWT->CYCCNT - prev_timer > wait_time)) {
FURI_LOG_D(
"Demo", "0xFF not found (ARR 0x%08lx, read %lu)", TIM2->ARR, led_driver->read_pos);
led_driver->read_pos = led_driver->write_pos - 1;
break;
}
} while(true);
}
static void led_driver_add_period_length(LedDriver* led_driver, uint32_t length) {
led_driver->timer_buffer[led_driver->write_pos++] = length;
led_driver->timer_buffer[led_driver->write_pos] = LED_DRIVER_TIMER_SETINEL;
}
static void led_driver_add_period(LedDriver* led_driver, uint16_t duration_ns) {
furi_assert(led_driver);
uint32_t reload_value = duration_ns / LED_DRIVER_TIMER_NANOSECOND;
if(reload_value > 255) {
FURI_LOG_E("Demo", "reload_value: %ld", reload_value);
}
furi_check(reload_value > 0);
furi_check(reload_value < 256);
led_driver_add_period_length(led_driver, reload_value - 1);
}
static void led_driver_add_color(LedDriver* led_driver, uint32_t rrggbb) {
UNUSED(rrggbb);
uint32_t ggrrbb = (rrggbb & 0xFF) | ((rrggbb & 0xFF00) << 8) | ((rrggbb & 0xFF0000) >> 8);
for(int i = 23; i >= 0; i--) {
if(ggrrbb & (1 << i)) {
led_driver_add_period(led_driver, LED_DRIVER_T0L);
led_driver_add_period(led_driver, LED_DRIVER_T1L);
} else {
led_driver_add_period(led_driver, LED_DRIVER_T0H);
led_driver_add_period(led_driver, LED_DRIVER_T1H);
}
}
}
void led_driver_transmit(LedDriver* led_driver) {
furi_assert(led_driver);
furi_assert(!led_driver->read_pos);
furi_assert(!led_driver->write_pos);
furi_hal_gpio_init(led_driver->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
furi_hal_gpio_write(led_driver->gpio, false);
const uint32_t bit_set = led_driver->gpio->pin << GPIO_BSRR_BS0_Pos;
const uint32_t bit_reset = led_driver->gpio->pin << GPIO_BSRR_BR0_Pos;
// Always start with HIGH
led_driver->gpio_buf[0] = bit_set;
led_driver->gpio_buf[1] = bit_reset;
for(size_t i = 0; i < LED_DRIVER_BUFFER_SIZE; i++) {
led_driver->timer_buffer[i] = LED_DRIVER_TIMER_SETINEL;
}
for(size_t i = 0; i < led_driver->count_leds; i++) {
led_driver_add_color(led_driver, led_driver->led_data[i]);
}
led_driver->dma_led_transition_timer.NbData = led_driver->write_pos + 1;
FURI_CRITICAL_ENTER();
led_driver_start_dma(led_driver);
led_driver_start_timer();
led_driver_spin_lock(led_driver);
led_driver_stop_timer();
led_driver_stop_dma();
FURI_CRITICAL_EXIT();
memset(led_driver->timer_buffer, LED_DRIVER_TIMER_SETINEL, LED_DRIVER_BUFFER_SIZE);
led_driver->read_pos = 0;
led_driver->write_pos = 0;
}
/*
int32_t main_led_test(void* _p) {
UNUSED(_p);
uint16_t num_leds = MAX_LED_COUNT;
LedDriver* led_driver = led_driver_alloc(num_leds, &gpio_ext_pc3);
uint32_t* data[80];
for(int i = 0; i < 80; i++) {
data[i] = malloc(16 * 16 * sizeof(uint32_t));
}
for(int j = 0; j < num_leds; j++) {
uint8_t red = rand() % 2;
uint8_t green = rand() % 4;
uint8_t blue = rand() % 4;
data[0][j] = red << 16 | green << 8 | blue;
}
data[0][0] = 0x000F00;
for(int i = 1; i < 80; i++) {
for(int j = 1; j < num_leds; j++) {
uint8_t red = rand() % 2;
uint8_t green = rand() % 4;
uint8_t blue = rand() % 4;
data[i][j] = red << 16 | green << 8 | blue;
data[i][j] = data[i - 1][j - 1];
}
data[i][0] = data[i - 1][num_leds - 1];
// for(int j = 0; j < num_leds; j++) {
// if(data[i - 1][j] == 0x000F00) {
// data[i][j] = 0x000F00;
// }
// }
data[i][rand() % num_leds] = 0x000F00;
}
int counter = 0;
while(true) {
uint32_t i = counter++ % 80;
for(int j = 0; j < num_leds; j++) {
led_driver_set_led(led_driver, j, data[i][j]);
}
led_driver_transmit(led_driver);
furi_delay_ms(20);
}
for(int i = 0; i < 80; i++) {
free(data[i]);
}
return 0;
}
*/