flipper-zero-tutorials/subghz/protocols/x10/x10.c

288 lines
10 KiB
C
Raw Normal View History

#include "x10.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolX10"
// @CodeAllNight - X10 Packet decoder...
//
// Do a Sub-GHz read at 310MHz, with 650KHz AM modulation.
//
// Pulses are as follows...
// + 9600 [16*te_short] ~ [te_delta*3] | 9025 [te_delta*7]
// - 4875 [8*te_short] ~ [te_delta*3] | 4488 [te_delta*5]
//
// 32 bits of data (see below)...
// + 600 [te_short] | 550
// - 600 [te_short] (for 0) or 1800 [te_long] (for 1) | 550 (for 0) or 1700 (for 1) [te_delta*2]
//
// + 600 [te_short]
// -43200 [72*te_short] ~ [te_delta*2]
//
// Data simplification of 32 bits can the thought of as:
// first 8 bits are device id (technically first 4 bits sent are channel #).
// second 8 bits are inverted from previous 8 bits.
// next 8 bits are command.
// last 8 bits are inverted from previous 8 bits.
//
// Format: SSSSXBXX ssssxbxx DBOQBXXX dboqbxxx
// S - The serial number (Channel) is encoded in the first four bits that were sent.
// x - Unused bits
// B - Bit 6 is set if the button should be button 9-16, instead of buttons 1-8.
// DQ - The 1st bit of byte 3 is 1 if DIMMER. (bit 4=0 for BRIGHT, bit 4=1 for DIM)
// B - The 2nd bit of byte 3 is the button number.
// Q - 3rd bit of byte 3 are 1 for OFF and 0 for ON (unless DIMMER).
// B - 4th and 5th bit of byte 3 is the rest of the button number.
//
// Actual protocol can be found at http://kbase.x10.com/wiki/CM17A_Protocol
static const SubGhzBlockConst subghz_protocol_x10_const = {
.te_short = 600,
.te_long = 1800,
.te_delta = 100,
.min_count_bit_for_found = 32,
};
struct SubGhzProtocolDecoderX10 {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderX10 {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
X10DecoderStepReset = 0,
X10DecoderStepFoundPreambula,
X10DecoderStepSaveDuration,
X10DecoderStepCheckDuration,
} X10DecoderStep;
const SubGhzProtocolDecoder subghz_protocol_x10_decoder = {
.alloc = subghz_protocol_decoder_x10_alloc,
.free = subghz_protocol_decoder_x10_free,
.feed = subghz_protocol_decoder_x10_feed,
.reset = subghz_protocol_decoder_x10_reset,
.get_hash_data = subghz_protocol_decoder_x10_get_hash_data,
.serialize = subghz_protocol_decoder_x10_serialize,
.deserialize = subghz_protocol_decoder_x10_deserialize,
.get_string = subghz_protocol_decoder_x10_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_x10_encoder = {
.alloc = NULL,
.free = NULL,
.deserialize = NULL,
.stop = NULL,
.yield = NULL,
};
const SubGhzProtocol subghz_protocol_x10 = {
.name = SUBGHZ_PROTOCOL_X10_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_315 /* Technically it is 310MHz only */ | SubGhzProtocolFlag_AM |
SubGhzProtocolFlag_Decodable,
.decoder = &subghz_protocol_x10_decoder,
.encoder = &subghz_protocol_x10_encoder,
};
void* subghz_protocol_decoder_x10_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderX10* instance = malloc(sizeof(SubGhzProtocolDecoderX10));
instance->base.protocol = &subghz_protocol_x10;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_x10_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
free(instance);
}
void subghz_protocol_decoder_x10_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.parser_step = X10DecoderStepReset;
}
bool subghz_protocol_x10_validate(void* context) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
SubGhzBlockDecoder* decoder = &instance->decoder;
uint64_t data = decoder->decode_data;
return decoder->decode_count_bit >= subghz_protocol_x10_const.min_count_bit_for_found &&
((((data >> 24) ^ (data >> 16)) & 0xFF) == 0xFF) &&
((((data >> 8) ^ (data )) & 0xFF) == 0xFF);
}
void subghz_protocol_decoder_x10_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
switch(instance->decoder.parser_step) {
case X10DecoderStepReset:
if((level) && (DURATION_DIFF(duration, subghz_protocol_x10_const.te_short * 16) <
subghz_protocol_x10_const.te_delta * 7)) {
instance->decoder.parser_step = X10DecoderStepFoundPreambula;
}
break;
case X10DecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_x10_const.te_short * 8) <
subghz_protocol_x10_const.te_delta * 5)) {
instance->decoder.parser_step = X10DecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
subghz_protocol_decoder_x10_reset(context);
}
break;
case X10DecoderStepSaveDuration:
if(level) {
if(DURATION_DIFF(duration, subghz_protocol_x10_const.te_short) <
subghz_protocol_x10_const.te_delta) {
if(instance->decoder.decode_count_bit ==
subghz_protocol_x10_const.min_count_bit_for_found) {
instance->decoder.parser_step = X10DecoderStepReset;
if (subghz_protocol_x10_validate(context)) {
FURI_LOG_E(TAG, "Decoded a signal!");
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
subghz_protocol_decoder_x10_reset(context);
} else {
instance->decoder.te_last = duration;
instance->decoder.parser_step = X10DecoderStepCheckDuration;
}
} else {
subghz_protocol_decoder_x10_reset(context);
}
} else {
subghz_protocol_decoder_x10_reset(context);
}
break;
case X10DecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_x10_const.te_short) <
subghz_protocol_x10_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_x10_const.te_short) <
subghz_protocol_x10_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = X10DecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_x10_const.te_short) <
subghz_protocol_x10_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_x10_const.te_long) <
subghz_protocol_x10_const.te_delta * 2)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = X10DecoderStepSaveDuration;
} else {
subghz_protocol_decoder_x10_reset(context);
}
} else {
subghz_protocol_decoder_x10_reset(context);
}
break;
}
}
/**
* Set the serial and btn values based on the data and data_count_bit.
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_x10_check_remote_controller(SubGhzBlockGeneric* instance) {
instance->serial = (instance->data & 0xF0000000) >> (24+4);
instance->btn = (((instance->data & 0x07000000) >> 24) | ((instance->data & 0xF800) >> 8));
}
uint8_t subghz_protocol_decoder_x10_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_x10_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_x10_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_x10_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
const char* CHANNEL_LETTERS = "MNOPCDABEFGHKLIJ";
void subghz_protocol_decoder_x10_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderX10* instance = context;
subghz_protocol_x10_check_remote_controller(&instance->generic);
char code_channel = CHANNEL_LETTERS[(instance->generic.serial & 0x0F)];
uint32_t code_button = 1 + (
((instance->generic.btn&0x10) >> 4) |
((instance->generic.btn&0x8) >> 2) |
((instance->generic.btn&0x40)>>4) |
((instance->generic.btn&4)<<1));
char* code_action = (instance->generic.btn & 0x20) == 0x20 ? "Off" : "On";
if (instance->generic.btn == 0x98) {
code_button = 0;
code_action = "Dim";
} else if (instance->generic.btn == 0x88) {
code_button = 0;
code_action = "Bright";
}
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Channel:%c \r\n"
"Button:%ld %s\r\n\r\n"
"Key:%lX%08lX\r\n"
"Sn:%07lX Btn:%X\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_channel,
code_button,
code_action,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)instance->generic.data,
instance->generic.serial,
instance->generic.btn);
}