flipper-zero-tutorials/subghz/apps/genie-recorder/protocols/genie.c

753 lines
26 KiB
C
Raw Permalink Normal View History

/**
* The majority of this code is from the keeloq.c file. The Genie garage door openers
* use a modified version of the Keeloq algorithm. The speed of the transmission is
* different (twice as fast). We don't have the manufacturer's code, so instead we
* use the button+serial number to look through a file of previously captured codes.
*
* You can use the Genie Recorder app to capture codes and save them to a .GNE file.
* It uses the GPIO pin on the Flipper Zero to click the remote automatically and
* extract the codes. A full capture is 65536 codes, so it takes about 2 days. Your
* receiver may become out-of-sync with your remote & you may need to pair it again.
*
* @CodeAllNight
*/
#include "genie.h"
#include "keeloq_common.h"
#define TAG "SubGhzProtocolGenie"
// Should be major version of supported Genie Recorder (.gne) files
#define GENIE_MAJOR_VERSION 2
#define GENIE_APPS_DATA_FOLDER EXT_PATH("apps_data")
#define GENIE_SAVE_FOLDER \
GENIE_APPS_DATA_FOLDER "/" \
"genie"
#define GENIE_FILE_EXT ".gne"
enum {
GENIE_MAGIC = 0, // 2 bytes
GENIE_VERSION = 2, // 2 bytes
GENIE_SN = 4, // 4 bytes
GENIE_LAST_SENT = 8, // 2 bytes
GENIE_REC_COUNT = 10, // 2 bytes
GENIE_RESERVED = 12, // 4 bytes
GENIE_DATA = 16, // 64K bytes
} genie_file;
static const SubGhzBlockConst subghz_protocol_genie_const = {
.te_short = 200,
.te_long = 400,
.te_delta = 70,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderGenie {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint16_t header_count;
};
struct SubGhzProtocolEncoderGenie {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
GenieDecoderStepReset = 0,
GenieDecoderStepCheckPreambula,
GenieDecoderStepSaveDuration,
GenieDecoderStepCheckDuration,
} GenieDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_genie_decoder = {
.alloc = subghz_protocol_decoder_genie_alloc,
.free = subghz_protocol_decoder_genie_free,
.feed = subghz_protocol_decoder_genie_feed,
.reset = subghz_protocol_decoder_genie_reset,
.get_hash_data = subghz_protocol_decoder_genie_get_hash_data,
.serialize = subghz_protocol_decoder_genie_serialize,
.deserialize = subghz_protocol_decoder_genie_deserialize,
.get_string = subghz_protocol_decoder_genie_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_genie_encoder = {
.alloc = subghz_protocol_encoder_genie_alloc,
.free = subghz_protocol_encoder_genie_free,
.deserialize = subghz_protocol_encoder_genie_deserialize,
.stop = subghz_protocol_encoder_genie_stop,
.yield = subghz_protocol_encoder_genie_yield,
};
const SubGhzProtocol subghz_protocol_genie = {
.name = SUBGHZ_PROTOCOL_GENIE_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load |
SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_genie_decoder,
.encoder = &subghz_protocol_genie_encoder,
};
void* subghz_protocol_encoder_genie_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderGenie* instance = malloc(sizeof(SubGhzProtocolEncoderGenie));
instance->base.protocol = &subghz_protocol_genie;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 20;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_genie_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderGenie* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Set serial number and button number from data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_genie_set_sn_and_btn(SubGhzBlockGeneric* instance) {
uint64_t key = subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit);
uint32_t key_fix = key >> 32;
instance->serial = key_fix & 0x0FFFFFFF;
instance->btn = key_fix >> 28;
}
/**
* Read 16-bits from file
* @param file Pointer to a File instance
* @return 16-bit unsigned integer
*/
static uint16_t subghz_protocol_genie_storage_file_read16(File* file) {
uint16_t read = 0;
char buffer[2] = {0};
storage_file_read(file, buffer, 2);
read |= (buffer[0] << 8);
read |= buffer[1];
return read;
}
/**
* Read 32-bits from file
* @param file Pointer to a File instance
* @return 32-bit unsigned integer
*/
static uint32_t subghz_protocol_genie_storage_file_read32(File* file) {
uint32_t read = 0;
char buffer[4] = {0};
storage_file_read(file, buffer, 4);
read = (buffer[0] << 24);
read |= (buffer[1] << 16);
read |= (buffer[2] << 8);
read |= buffer[3];
return read;
}
/**
* Write 16-bits to file
* @param file Pointer to a File instance
* @param data 16-bit unsigned integer
* @return true On success
*/
static bool subghz_protocol_genie_storage_file_write16(File* file, uint16_t data) {
char buffer[2] = {0};
buffer[0] = (data >> 8) & 0xFF;
buffer[1] = data & 0xFF;
return storage_file_write(file, buffer, 2) == 2;
}
/**
* Finds next code from the .gne file associated with the given code_low.
* @param code_low 32-bit unsigned integer (static part of code)
* @param code_high 32-bit unsigned integer (dynamic part of code)
* @param update_index If true, the index of the last sent code will be updated.
* @return 64-bit unsigned integer (next code) or 0xFFFFFFFFFFFFFFFF if not found
*/
static uint64_t subghz_protocol_genie_next_code_from_file(
uint32_t code_low,
uint32_t code_high,
bool update_index) {
Storage* storage = furi_record_open(RECORD_STORAGE);
char buffer[256] = {0};
snprintf(buffer, 128, "%s/%08lX%s", GENIE_SAVE_FOLDER, code_low, GENIE_FILE_EXT);
uint64_t result = 0xFFFFFFFFFFFFFFFF;
File* file = NULL;
do {
if(!storage) {
FURI_LOG_E(TAG, "Failed to access storage");
break;
}
file = storage_file_alloc(storage);
if(!file) {
FURI_LOG_E(TAG, "Failed to alloc file");
break;
}
if(!storage_file_exists(storage, buffer)) {
FURI_LOG_E(TAG, "File %s does not exist, rerun Genie Recorder app!", buffer);
break;
}
if(storage_file_open(file, buffer, FSAM_READ_WRITE, FSOM_OPEN_EXISTING)) {
if(!storage_file_seek(file, GENIE_VERSION, true)) {
FURI_LOG_E(TAG, "Failed to seek to %d", GENIE_VERSION);
break;
}
uint16_t version = subghz_protocol_genie_storage_file_read16(file);
if((version >> 8) > GENIE_MAJOR_VERSION) {
FURI_LOG_E(TAG, "Unsupported version: %04X", version);
break;
}
if(!storage_file_seek(file, GENIE_SN, true)) {
FURI_LOG_E(TAG, "Failed to seek to %d", GENIE_SN);
break;
}
uint32_t low = subghz_protocol_genie_storage_file_read32(file);
if(low != code_low) {
FURI_LOG_E(TAG, "Btn/SN mismatch. Expected: %08lX, got: %08lX", code_low, low);
break;
}
if(!storage_file_seek(file, GENIE_LAST_SENT, true)) {
FURI_LOG_E(TAG, "Failed to seek to %d", GENIE_SN);
break;
}
uint16_t last_sent = subghz_protocol_genie_storage_file_read16(file);
last_sent -= last_sent % (COUNT_OF(buffer) / 4);
result = code_high;
bool found = false;
int j = 0;
for(int i = 0; i <= 65536; i++) {
if(last_sent % (COUNT_OF(buffer) / 4) == 0) {
if(!storage_file_seek(file, GENIE_DATA + (last_sent * 4), true)) {
FURI_LOG_E(TAG, "Failed to seek to %d", GENIE_DATA + (last_sent * 4));
break;
}
if(!storage_file_read(file, buffer, COUNT_OF(buffer))) {
FURI_LOG_E(TAG, "Failed to read %d", COUNT_OF(buffer));
break;
}
j = 0;
}
uint32_t high = (buffer[j++] << 24);
high |= (buffer[j++] << 16);
high |= (buffer[j++] << 8);
high |= buffer[j++];
if(found && high != 0) {
result = high;
break;
}
found |= (high == code_high);
if(last_sent == 0xFFFF) {
last_sent = 0;
} else {
last_sent++;
}
}
if(found && update_index) {
if(!storage_file_seek(file, GENIE_LAST_SENT, true)) {
FURI_LOG_E(TAG, "Failed to seek to %d", GENIE_SN);
break;
}
if(!subghz_protocol_genie_storage_file_write16(file, last_sent)) {
FURI_LOG_E(TAG, "Failed to write last sent. %d", last_sent);
break;
}
} else if(!found) {
FURI_LOG_E(TAG, "Code not found: %08lX", code_high);
break;
}
} else {
FURI_LOG_E(TAG, "Failed to open file");
break;
}
} while(false);
if(file) {
storage_file_close(file);
storage_file_free(file);
}
furi_record_close(RECORD_STORAGE);
return result;
}
/**
* Finds next code for this remote.
* @param instance Pointer to a SubGhzProtocolEncoderGenie* instance
* @param counter_up attempt to find next code if the value is true
*/
static void
subghz_protocol_genie_find_next_code(SubGhzProtocolEncoderGenie* instance, bool counter_up) {
instance->generic.data_count_bit = 64;
instance->generic.cnt = 0x0000;
if(counter_up) {
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t next_code =
subghz_protocol_genie_next_code_from_file(code_found_lo, code_found_hi, true);
FURI_LOG_D(
TAG,
"Low: %08lX High: %08lX New-High: %08lX",
code_found_lo,
code_found_hi,
(uint32_t)next_code);
instance->generic.cnt = next_code &
0xffff; // We don't know counter value, just use bottom of code.
if((next_code & 0xFFFFFFFF) == 0xFFFFFFFF) {
instance->generic.data = ((uint64_t)code_found_hi) << 32 | code_found_lo;
} else {
instance->generic.data = ((uint64_t)next_code) << 32 | code_found_lo;
}
}
}
/**
* Key generation from simple data
* @param instance Pointer to a SubGhzProtocolEncoderGenie* instance
* @param btn Button number, 4 bit
* @param counter_up increasing the counter if the value is true
*/
static bool subghz_protocol_genie_gen_data(
SubGhzProtocolEncoderGenie* instance,
uint8_t btn,
bool counter_up) {
uint32_t fix = (uint32_t)btn << 28 | instance->generic.serial;
uint32_t hop = 0;
uint64_t code_found_reverse;
subghz_protocol_genie_find_next_code(instance, counter_up);
code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
hop = code_found_reverse & 0x00000000ffffffff;
if(hop) {
uint64_t yek = (uint64_t)fix << 32 | hop;
instance->generic.data =
subghz_protocol_blocks_reverse_key(yek, instance->generic.data_count_bit);
}
return true;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderGenie instance
* @return true On success
*/
2024-02-04 19:13:58 +00:00
static bool subghz_protocol_encoder_genie_get_upload(
SubGhzProtocolEncoderGenie* instance,
uint8_t btn,
bool counter_up) {
furi_assert(instance);
// Generate next key
2024-02-04 19:13:58 +00:00
if(!subghz_protocol_genie_gen_data(instance, btn, counter_up)) {
return false;
}
size_t index = 0;
size_t size_upload = 11 * 2 + 2 + (instance->generic.data_count_bit * 2) + 4;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
for(uint8_t i = 11; i > 0; i--) {
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_genie_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_genie_const.te_short);
}
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_genie_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_genie_const.te_short * 10);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_genie_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_genie_const.te_long);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_genie_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_genie_const.te_short);
}
}
// +send 2 status bit
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_genie_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_genie_const.te_long);
// send end
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_genie_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_genie_const.te_short * 40);
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_genie_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderGenie* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_genie_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_genie_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
subghz_protocol_genie_set_sn_and_btn(&instance->generic);
2024-02-04 19:13:58 +00:00
uint32_t increment = 1;
flipper_format_read_uint32(flipper_format, "Increment", (uint32_t*)&increment, 1);
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
// Get_upload will generate the next key.
2024-02-04 19:13:58 +00:00
if(!subghz_protocol_encoder_genie_get_upload(
instance, instance->generic.btn, increment != 0)) {
ret = SubGhzProtocolStatusErrorEncoderGetUpload;
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
ret = SubGhzProtocolStatusErrorParserOthers;
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> (i * 8)) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
ret = SubGhzProtocolStatusErrorParserKey;
break;
}
instance->encoder.is_running = true;
} while(false);
return ret;
}
void subghz_protocol_encoder_genie_stop(void* context) {
SubGhzProtocolEncoderGenie* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_genie_yield(void* context) {
SubGhzProtocolEncoderGenie* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_genie_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderGenie* instance = malloc(sizeof(SubGhzProtocolDecoderGenie));
instance->base.protocol = &subghz_protocol_genie;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_genie_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
free(instance);
}
void subghz_protocol_decoder_genie_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
instance->decoder.parser_step = GenieDecoderStepReset;
}
void subghz_protocol_decoder_genie_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
switch(instance->decoder.parser_step) {
case GenieDecoderStepReset:
if((level) && DURATION_DIFF(duration, subghz_protocol_genie_const.te_short) <
subghz_protocol_genie_const.te_delta) {
instance->decoder.parser_step = GenieDecoderStepCheckPreambula;
instance->header_count++;
}
break;
case GenieDecoderStepCheckPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_genie_const.te_short) <
subghz_protocol_genie_const.te_delta)) {
instance->decoder.parser_step = GenieDecoderStepReset;
break;
}
if((instance->header_count > 2) &&
(DURATION_DIFF(duration, subghz_protocol_genie_const.te_short * 10) <
subghz_protocol_genie_const.te_delta * 10)) {
// Found header
instance->decoder.parser_step = GenieDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = GenieDecoderStepReset;
instance->header_count = 0;
}
break;
case GenieDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = GenieDecoderStepCheckDuration;
}
break;
case GenieDecoderStepCheckDuration:
if(!level) {
if(duration >= ((uint32_t)subghz_protocol_genie_const.te_short * 2 +
subghz_protocol_genie_const.te_delta)) {
// Found end TX
instance->decoder.parser_step = GenieDecoderStepReset;
2024-02-04 19:13:58 +00:00
FURI_LOG_D(TAG, "Found end TX. Count bit: %d", instance->decoder.decode_count_bit);
// We expect 64-bits of data, but some Intellisense compatible remote send
// 66-bits or 69-bits of data (+5 extra bits).
if((instance->decoder.decode_count_bit >=
subghz_protocol_genie_const.min_count_bit_for_found) &&
(instance->decoder.decode_count_bit <=
2024-02-04 19:13:58 +00:00
subghz_protocol_genie_const.min_count_bit_for_found + 5)) {
if(instance->generic.data != instance->decoder.decode_data) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit =
subghz_protocol_genie_const.min_count_bit_for_found;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->header_count = 0;
}
break;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_genie_const.te_short) <
subghz_protocol_genie_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_genie_const.te_long) <
subghz_protocol_genie_const.te_delta * 2)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_genie_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
} else {
instance->decoder.decode_count_bit++;
}
instance->decoder.parser_step = GenieDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_genie_const.te_long) <
subghz_protocol_genie_const.te_delta * 2) &&
(DURATION_DIFF(duration, subghz_protocol_genie_const.te_short) <
subghz_protocol_genie_const.te_delta)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_genie_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else {
instance->decoder.decode_count_bit++;
}
instance->decoder.parser_step = GenieDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = GenieDecoderStepReset;
instance->header_count = 0;
}
} else {
instance->decoder.parser_step = GenieDecoderStepReset;
instance->header_count = 0;
}
break;
}
}
uint8_t subghz_protocol_decoder_genie_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_genie_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
SubGhzProtocolStatus res =
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
subghz_protocol_genie_set_sn_and_btn(&instance->generic);
return res;
}
SubGhzProtocolStatus
subghz_protocol_decoder_genie_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_genie_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
void subghz_protocol_decoder_genie_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderGenie* instance = context;
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
// If we are in the genie thread (running the Genie Recorder app),
// output the protocol & key, then exit without looking for the next code.
const char* name = furi_thread_get_name(furi_thread_get_current_id());
2023-10-19 14:53:15 +00:00
if(name != NULL && strcmp(name, "genie-rx") == 0) {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo);
return;
}
uint64_t next_code =
subghz_protocol_genie_next_code_from_file(code_found_lo, code_found_hi, false);
subghz_protocol_genie_set_sn_and_btn(&instance->generic);
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo);
if((next_code & 0xFFFFFFFF) == 0xFFFFFFFF) {
furi_string_cat_printf(
output,
"No keys found. Please run the\r\n"
"Genie Recorder app to\r\n"
"extract keys from the\r\n"
"remote.");
instance->generic.cnt = 0;
instance->generic.data = ((uint64_t)code_found_hi) << 32 | code_found_lo;
} else if((next_code & 0xFFFFFFFF) == code_found_hi) {
furi_string_cat_printf(
output,
"Key missing. Please run the\r\n"
"Genie Recorder app to\r\n"
"extract additional keys from\r\n"
"the remote.");
instance->generic.cnt = 0;
instance->generic.data = ((uint64_t)code_found_hi) << 32 | code_found_lo;
} else {
furi_string_cat_printf(output, "Next code: %08lX", (uint32_t)next_code);
}
}